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ABSTRACT: This review explores the roles of the Fourier Transforms and Convolution in image processing. Despite the wide range 
of techniques available, these mathematical operational remain fundamental in transitioning from the spatial to frequency domains, 
significantly enhancing image analysis and filtering capabilities. An examination of the theoretical foundations of Fourier Transform 
and Convolution is presented with examples to demonstrate their use. Specifical emphasis is placed on their efficiency in deblurring 
and noise reduction, particularly in removing motion blur from images underneath the presence of noise.  Furthermore, the paper also 
discusses the impact of these techniques in contemporary applications, such as high-resolution medical imaging. By analyzing these 
fundamental tools, the review aims to provide a deeper understanding of their critical roles and implications in the advancem ent of 
image processing technologies.

INTRODUCTION 
Image processing has proved to be extremely important for 
applications ranging from medical diagnostics to digital media. 
Digital image processing involves methods that manipulate 
digital images by utilizing computer algorithms1. This field 
spans a range of techniques, from basic pixel processing to 
linear shift-invariant systems and even nonlinear image filters2. 
The roots of digital manipulation lies in its role as a 
preprocessing step for various applications, including facial 
recognition, object detection, and image compression1. From 
these images, image processing aims to dispense of the 
unimportant information and enhance the important 
information of the image.  
Both the input and output in this process are images, which are 
defined by the variation in brightness of their pixel values. For 
filtering and analysis, an image is converted into a numeric 
matrix of its pixels. This transformation is referred to as 
digitization3. Analyzing and understanding this numerical 
matrix requires the use of image models and transforms. Image 
models serve to quantitatively characterize the data within the 
image, while image transforms are instrumental in examining 
this data across different domains, including the transform 
domain3. These techniques are essential for various image 
filtering applications such as compression, enhancement, and 
noise reduction3.  
In image filtering, many methods have proven to be more 
straightforward to develop and analyze in the frequency 
domain. The Fourier Transform serves as an efficient tool for 
transitioning from the spatial to the frequency domain2. 
Similarly, convolution and its inverse process, deconvolution, 
are critically important for removing motion blur from images. 
The Fourier Transform and Convolution are intricately 
intertwined, offering significant utility when used together. 
Their efficiency has improved with the advancement of fast 
algorithms for computing the Fourier Transform and its 
inverse2. When dealing with large filters for image convolution, 
it is often more efficient to perform this operation in the 
frequency domain. Additionally, this approach allows for a 
better understanding of a filter's effects. Any filter in the spatial 

domain can be analyzed to determine its impact on the 
frequencies in the frequency domain2. 
The broader objective of this review is to better explore how the 
Fourier Transform and Convolution mathematical operations 
play a key role in image processing 

THEORETICAL FOUNDATION 
The core techniques for image filtering, a subset of image 
processing, refer to the procedures used to manipulate digital 
pictures by changing their pixel values. Often, algorithms apply 
mathematical operations to help with noise reduction, blurring, 
feature extraction, etc5. 
Fourier Transform 
The 2D Fourier Transform is essential in image processing, as 
it decomposes an image, denoted as 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are 
spatial coordinates, into its constituent frequencies, example 
shown in Figure 1. This transformation shifts the representation 
from the spatial domain, characterized by pixel brightness and 
location, to the frequency domain, represented through the 
frequency and amplitude of sinusoidal components. Low 
frequencies represent gradual, smooth transitions in the image, 
while high frequencies align with rapid changes and fine 
details3. This shift simplifies tasks such as image filtering, 
where operations like blurring (low-pass filtering) or edge 
enhancement (high-pass filtering) become more efficient. The 
Fourier Transform also uncovers hidden periodicities not 
readily visible in the spatial domain2. 
The Fourier Transform captures both amplitude and phase of 
sinusoidal components, representing frequencies with both 
positive and negative numbers2. For discrete images, the 
Discrete Fourier Transform (DFT) is applied: 

ℱ[𝑢, 𝑣] = ∑ ∑ 𝑓[𝑚, 𝑛]𝑒−𝑖2𝜋(𝑢𝑚
𝑀 +𝑣𝑛
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where 𝑢 and 𝑣 are frequencies along the 𝑥 and 𝑦-directions, 
respectively, and where 𝑀 and 𝑁 are the dimensions of the 
image2. 
The Inverse Discrete Fourier Transform (IDFT) is given by: 
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The Inverse Discrete Fourier Transform (IDFT) is used to 
reconstruct the original image from its frequency domain 
representation. Essentially, it reverses the process of the 
Discrete DFT. The purpose of the IDFT is to enable the analysis 
and manipulation of images in the frequency domain (such as 
filtering or enhancement) and then convert them back into their 
original in the spatial form. 
 

 
Figure 1. Picture depicting the UNC Tar Heel in the spatial domain 
and the displayed log of its Fourier Transform in the frequency 
domain. The strong lines emanating from the center of the Fourier 
transform indicate high frequencies along these lines. These 
frequencies correlate to the edges throughout the ram due to the 
sharp contrast between the different and distinct color transitions in 
the image. Due to the relative complexity of the image, it is 
extremely difficult to correlate the frequencies and fully interpret 
its transform. Humans are not used to having to interpret signals in 
frequency domain2. The frequency key at the bottom identifies the 
range of frequencies of the Fourier transform. The min frequency 
occurs at 0. 
 
Convolution 
Convolution in image filtering is a mathematical operation of 
combining two functions to form a third function. More 
specifically, convolution is an integral that defines the amount 
of overlap of one function as it is shifted over another function7. 
The convolution for 2D image filtering can be represented as: 

𝑔(𝑥, 𝑦) = (𝑓 ∗ ℎ)(𝑥, 𝑦) 

𝑔(𝑥, 𝑦) = ∑ ∑ 𝑓(𝑥 − 𝑚, 𝑦 − 𝑛) ∙ ℎ(𝑥, 𝑦)
𝑏

𝑛=−𝑏

𝑎

𝑚=−𝑎

 

 
In this equation, f is the image, h is the kernel (or filter), and g 
is the convolved image. The values of a and b are determined 
based on the size of h, and it is noted that the kernel h is usually 
smaller than the image, f 2. The convolution computation 
involves flipping the kernel h both horizontally and vertically 
and then sliding it across the image f, computing the sum of 
products at each position to form the output image g8. All pixels 
from the summation form the image g. 
The importance of convolution in image filtering relates the 
ability to perform operations in the frequency domain, which 
can computationally be more efficient than in the spatial 

domain. Thus, convolution is fundamental for image filtering, 
allowing for blurring, sharpening, and edge detection 
operations, all which result from using different kernels.  
Convolution’s significance in relation to the Fourier Transform 
stems from one key relation, the Convolution Theorem. This 
theorem states that the convolution in the spatial domain is 
equivalent to multiplication in the frequency domain7. 
Mathematically: 

ℱ{(𝑓 ∗ ℎ)(𝑥, 𝑦)} = ℱ{𝑓(𝑥, 𝑦)} ∙ ℱ{ℎ(𝑥, 𝑦)} 
 
For two functions 𝑓(𝑥, 𝑦) and ℎ(𝑥, 𝑦), their convolution in the 
spatial domain is equal to the production of their Fourier 
Transforms in the Frequency domain. This theorem allows for 
the mass simplification of image operations with large kernels 
by utilizing simple multiplication in the frequency domain6. 

FOURIER AND CONVOLUTION IN PRACTICE 
Fourier analysis allows for image representation in terms of 
frequencies, rather than individual pixel values. The conversion 
of images to the frequency domain eliminates the often-
inefficient process of looking at each single pixel. Typical 
filters applied in the frequency domain include low pass, high 
pass, and Gaussian filters. These filters are applied to images in 
the frequency domain via multiplication. Ideal low pass of high 
pass filters seeks to discriminate or enhance certain frequencies 
of the image. High frequencies correspond to rapid changes in 
intensity or color values in an image which low frequencies 
correspond to the slow changes in intensity or color values. 
High frequencies can often be mapped to the fine details of an 
image such as edges or sharp transitions5. Low frequencies are 
often found in the smooth areas of an image such as gradual 
transitions. Manipulating such frequencies is an efficient way 
to alter the contents of an image.  
A low pass filter, shown in Figure 2, allows for the passage of 
low frequencies and eliminates the higher frequencies. In the 
spatial domain this translates to the reduction of sharp edges or 
noise and the continuance of smooth variations10. Typically, 
low pass filters are utilized to reduce high frequency noise 
components or to create a blurring effect by smoothing out the 
image with the enhancement of the low frequencies.  

 
Figure 2: Application of a Low Pass Filter to the Fourier Transform 
of the UNC Ram Image. Originally, the ram's head features many 
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sharp edges and transitions, particularly in the horns and facial area. 
By applying the low pass filter in the frequency domain, all 
frequencies except for the low ones are eliminated. The resulting 
image, obtained after performing the inverse Fourier transform 
exhibits a smoother appearance, with diminished sharp contrasts, 
exemplifying the smoothing effect of low pass filtering. 
 
A High Pass filter, Figure 3, operates opposite of that compared 
to the Low Pass filter. The High Pass filter allows for the 
transmission of the higher frequencies and reduces the low 
frequencies. Its application typically results in the accentuation 
of edges or fine details and decreases or eliminates the gradual 
intensity shifts10. A High Pass filter is typically utilized for 
specific edge enhancement for object detection is computer 
vision applications or image sharpening10. 

 
Figure 3: Application of a High Pass Filter to the Fourier 
Transform of the UNC Ram Image. The ram's head is filled by 
various solid colors and are essentially the only smooth transitions 
in the image. Thus, upon application of the high pass filter in the 
frequency domain, all frequencies except for the high ones are 
eliminated. The resulting image, obtained after performing the 
inverse Fourier transform exhibits almost a uniform color with the 
sole features of the image being the edges, with increased sharp 
contrasts. 
 
An additional type of low pass filter smooths images utilizing 
the Gaussian function and is known as the Gaussian filter. 
Application of the Gaussian filter results in more gradual 
transitions compared to typical low pass filters2. Typical 
utilization for gaussian filters includes smoothing, blurring, or 
noise reduction.  
The Gaussian filter is defined by its use of the Gaussian 
function, Figure 4. This filter smoothly blurs images with a bell-
shaped curve. This leads to more subtle transitions compared to 
other low pass filters, avoiding the abrupt changes. What sets 
the Gaussian filter apart is its ability to reduce noise and fine 
details without introducing common artifacts like ringing2. This 
makes it particularly useful in pre-processing for computer 
vision, where maintaining the main features of an image is 
essential. Application of the Gaussian filter results in more 
gradual transitions compared to typical low pass filters2. 
Its flexibility is improved by the ability to control the extent of 
blurring through the standard deviation parameter of the 
Gaussian function11. Gaussian filters are often employed in 

edge detection and reducing noise to generate more accurate 
results for edge detection algorithms.  

 
Figure 4: A Gaussian smoothing filter is applied to the Fourier 
Transform of the UNC Ram Image. Like a low pass filter, the 
gaussian-shaped pulse filter removes the high frequency noise. The 
gaussian filter smooths the ram image by decreasing and 
eliminating the high frequencies that define the contrasts and sharp 
features of the image. The original image is displayed in the top 
left. The first path to the final image involves the convolution of 
the original image with the Gaussian filter in the spatial domain, 
exhibited by the left column. The second path to the final image 
involves multiplication of the gaussian filter and the original image 
in the frequency domain, and then the computation inverse Fourier 
transform to arrive at the final image.  

DECONVOLUTION AND MOTION BLUR 
Motion Deblur Deconvolution 
For image processing, blurring can be modeled as the 
convolution of an image 𝑓(𝑥, 𝑦) with a Point Spread Function 
(PSF) ℎ(𝑥, 𝑦), example shown in Figure 5. Typically, a point 
squared function is estimated utilizing gyroscopes and 
accelerometers2. Utilizing the previously defined Convolution 
Theorem, the blurry image 𝑔(𝑥, 𝑦) with randomly generated 
Noise, 𝑛(𝑥, 𝑦), is mathematically expressed: 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) 
 
In the frequency domain, after taking the Fourier Transform of 
both sides of the equation, the convolution operation in the 
spatial domain becomes a multiplication operation.  
The functions correspond to their respective Fourier 
Transformations 
𝐺(𝑢, 𝑣), 𝐹(𝑢, 𝑣), 𝐻(𝑢, 𝑣), 𝑎𝑛𝑑 𝑁(𝑢, 𝑣). Utilizing this 
relationship, recovery of the original image, 𝐹(𝑢, 𝑣), in the 
frequency domain is given by: 

𝐹(𝑢, 𝑣) =
𝐺(𝑢, 𝑣)
𝐻(𝑢, 𝑣) 
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where 𝐹(𝑢, 𝑣) is given instead of 𝐹(𝑢, 𝑣) as the exact original 
image in the frequency domain cannot be recovered due to the 
unknown noise8. The recovered image 𝑓(̅𝑥, 𝑦) is then found by 
taking the inverse Fourier Transform of 𝐹(𝑢, 𝑣). Typically 
issues with this method arise due to the amplification of noise 
in the deconvolution process. The PSF function, simulating the 
motion blur, behaves like a low pass filter and amplifies the 
high frequncies2. As the added noise, 𝑛(𝑥, 𝑦), is high in 
frequency, this leads to its amplification and the need for some 
type of noise suppression. This concept is shown in Figure 6, 
where the Motion Blur Recovered Image is just random noise 
and not at all comparable to the original image. 
 

 
Figure 5: The process above shows the construction of a blurred 
UNC Ram image with noise. First, the Original Image is convolved 
with the PSF, representing the motion blur. After convolution, 
noise is introduced to the image in the form of random high 
frequencies. The resulting image is a combination of a blur, with a 
known kernel, and a combination of unknown high frequencies 
meant to represent noise. The introduced external noise will prove 
to present significant complications in the recovery of the initial 
image through normal deconvolution. 
 
Wiener Deconvolution 
Wiener deconvolution is a method that aims to reduce additive 
noise, 𝑛(𝑥, 𝑦). The implementation of the deconvolution 
methods remains highly similar to the typical motion deblur 
deconvolution with the exception of the addition of a constant 
𝐾, which represents the noise-to-signal ratio. Often, 𝐾 is 
estimated as some constant value to recover the original image 
with some graininess2. The deconvolution formula of the image 
in the frequency domain is given by: 

𝐹(𝑢, 𝑣) =
𝐻(𝑢, 𝑣) ∙ 𝐺(𝑢, 𝑣)
|𝐻(𝑢, 𝑣)2| + 𝐾  

The Wiener filter suppresses the noise by reducing the 
frequencies at locations where the PSF has relatively small 
values9. This process then hopes to avoid the amplification of 
noise typically resulting from basic motion deblur 
deconvolution.  
Ultimately both the Motion Deblur Deconvolution and Wiener 
Deconvolution both utilize the Fourier Transformation to aid in 
mathematical manipulations and computations by operating in 

the frequency domain. A clear difference in their effectiveness 
with additional noise is shown in Figure 6. 

 
Figure 6: This set of images demonstrates the process of 
attempting to recover the original image from the blurred and noisy 
version created in Figure 5. The 'Motion Deblur Recovered Image' 
was produced using standard deconvolution, which involved 
dividing the Fourier Transform of the Blurry Noisy image by that 
of the Motion Blur PSF. However, this approach significantly 
amplified the high-frequency random noise post-inverse Fourier 
Transform (IFT), resulting in the recovered image being 
unrecognizable. This also highlights the inadequacy of standard 
deconvolution in noisy conditions. Conversely, the second method, 
employing Wiener deconvolution, substantially improved the 
quality of the recovered image, making . Due to the random nature 
of the noise, and the absence of an exact noise kernel, precise 
determination of the K value in Wiener deconvolution was 
challenging. This resulted in residual high-frequency noise, shown 
as streaks across the image, exemplifying the effects of random 
noise. 

RECENT ADVANCES AND FUTURE PROSPECTS 
Recently, the use of the Fourier Transform and Convolution has 
seen a major increase in its applicability with Artificial 
Intelligence (AI) image and video classification. Utilizing these 
fundamental mathematical methods alongside the ever-
improving high-performance computing and algorithms, 
machine learning has allowed for more intelligent filtering 
techniques12.  
Other developments pertain to the field of medical imaging, 
where Fourier transform techniques are extremely important 
tools for MRI scans. These techniques allow for more detailed 
images and ultimately aid in a more accurate medical diagnosis. 
However, despite their usefulness, The Fourier Transform and 
Convolution methods continue to face difficulties when dealing 
with noise and image distortions. Potential solutions and 
ongoing research related to addresses these difficulties are 
aiming at combining traditional Fourier transformation methods 
with more recent non-linear image processing techniques12.  

CONCLUSION 
The primary benefit of utilizing the Fourier Transform within 
image processing is its ability to transition components from the 
spatial to frequency domain. In the frequency domain, 
manipulation of frequency components with linear operations 
proves to be a much more efficient method than in the spatial 
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domain for tasks such as edge enhancement or noise reduction. 
Convolution also maintains a key role in image processing, 
especially for image filtering techniques. Within the frequency 
domain, complex spatial domain integrals become simple 
products in the frequency space. Ultimately, convolution 
significantly applies to crucial edge detection and feature 
extraction for enhancing image quality throughout much of 
image processing.  
However, it must be important to recognize the limitations in 
these techniques with their handling of non-linear image 
distortions. Ongoing research seeks to address these issues with 
machine learning and adaptive filers to uphold its integrity in 
many applications. The continual evolution of these 
fundamental mathematical tools and their adaptations with new 
applications and improvements proves their immortality in the 
field of image processing.  
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