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Abstract—Magnetic Resonance Imaging (MRI) is currently the
gold standard for imaging clinical diagnostics. Techniques like
image segmentation, identification, and deblurring can enhance
diagnostic accuracy in MRI. This paper implements and evalu-
ates the robustness of the Wasserstein-Generative Adversarial
Network (WGAN) method as proposed in previous research
[1]. The deep learning model specifically applies imaging de-
noising while examining the structural similarity of neighboring
volumetric slices. The model uses residual autoencoders with
convolutional and deconvolution operations to denoise three
dimensional (3D) MRI scans with a WGAN network. To prevent
oversmoothing, a custom linear combination loss function was de-
veloped, using Mean Squared Error (MSE), VGG-19 perceptual
similarity, and MSE adversarial loss. The model is compared
to the state-of-the-art BM3D method on PD-weighted images.
Peak Signal to Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) metrics were calculated to evaluate the
differences between these models. While BM3D outperformed
the PD-weighted WGAN models in PSNR across all noise levels,
the WGAN models achieved higher SSIM values at higher noise
levels, demonstrating better preservation of structural details and
mitigating BM3D’s tendency to oversmooth the data.

Index Terms—Magnetic Resonance Image, Encoder, Decoder,
Generator, Discriminator, Wasserstein, Deep Learning

I. INTRODUCTION

MRI is a critical tool in clinical diagnostics and research
due to its ability to non-invasively generate high-resolution 3D
images of internal tissues and organs. However, a drawback of
MRI image acquisition is that they are often affected by noise.
Depending on the specific MRI acquisition device, MRIs
are compromised by noise of varying magnitudes in real-
world scenarios, particularly when high speed or resolution is
required. Noise degrades image quality and negatively affects

the accuracy of clinical diagnostic registration, segmentation,
and detection [2]–[4]. Among common noise types, such as
Gaussian and Raleigh, Rician noise is most present in MRIs
and is challenging to computationally approximate due to
its non-Gaussian distribution. The complex composition of
Rician noise necessitates robust algorithms to approximate the
generation of this real-world noise and subsequent denoising
algorithms [5].

Several approaches have been proposed for MRI denoising,
which can be broadly categorized into traditional, statistical,
and deep learning-based methods. Traditional techniques, such
as anisotropic diffusion filters [6], non-local means (NLM)
filters [7], [8], and their extensions [9], [10], operate in the
spatial domain to suppress noise while preserving structural
details. Although these methods have been widely used, they
often suffer from computational inefficiency and oversmooth-
ing effects. Statistical methods often attempt to model the
noise distribution, such as the Rician noise model, and derive
optimal denoising solutions based on these assumptions [11],
[12]. Despite their mathematical rigor, statistical methods often
require complex parameter tuning and lack adaptability to
diverse clinical data.

In recent years, the rapid advancement of deep learning has
revolutionized image processing tasks, including MRI denois-
ing. Deep learning approaches leverage convolutional neural
networks (CNNs), autoencoders, and generative adversarial
networks (GANs) to achieve state-of-the-art performance in
tasks such as denoising, super-resolution, and deblurring [13]–
[15]. For example, CNN-based methods have demonstrated
superior performance over traditional algorithms, including
BM3D, NLM, and sparse representation techniques [14].



GANs, in particular, have been used to model complex data
distributions and generate high-quality denoised images while
addressing the oversmoothing effects of of CNN-based ap-
proaches [16], [17].

To further improve MRI denoising, Ran et al. [1] pro-
posed the Residual Encoder–Decoder Wasserstein Generative
Adversarial Network (RED-WGAN), which integrates several
innovative components. First, the generator network employs
a residual encoder-decoder structure with skip connections to
preserve fine structural details and edges critical for medical
analysis. Second, the WGAN framework stabilizes training
and ensures the generator learns the true data distribution,
effectively mitigating the challenges of traditional GANs [18].
Finally, by incorporating a perceptual loss term computed
using a pre-trained VGG-19 network, the model enhances
structural preservation and avoids oversmoothing [19].

In the proposed paper, the RED-WGAN outperformed state-
of-the-art methods such as BM4D [10], PRI-NLM3D [9], and
CNN3D in both simulated and clinical datasets. Its ability to
suppress noise while maintaining structural integrity was vali-
dated across a range of noise levels and imaging modalities [1].

In this project, we replicate and evaluate the RED-WGAN
framework to verify its efficacy in MRI denoising. This
involves implementing the proposed architecture, training on a
clinical dataset, and comparing its performance against tradi-
tional and deep learning methods. This work aims to contribute
to the development and validation of robust MRI denoising
approaches, improving diagnostic accuracy and reliability.

II. METHODS

A. Noise Reduction Model

MRI images are commonly affected by Rician noise, which
is constructed of real and imaginary components. This noise
complicates clinical diagnoses and impacts tasks such as
segmentation and registration [11], [20]. The goal of MRI
denoising is to recover a high-quality image y ∈ Rm×n from
a noisy input x ∈ Rm×n, where:

x = σ(y), (1)

and σ represents the noise function. Deep learning approaches
learn an inverse mapping function f such that:

ŷ = f(x), ŷ ≈ y. (2)

The task is treated as an optimization problem:

argmin
f

∥ŷ − y∥2, (3)

where the model minimizes the difference between the recon-
structed image ŷ and the ground truth y.

B. Wasserstein GAN

GAN: GANs consist of two networks: a generator G and a
discriminator D. The generator G maps noisy inputs x to de-
noised outputs G(x), while the discriminator D distinguishes
between real images y and generated images G(x). Traditional

GANs use a binary classification loss for the discriminator,
which can lead to mode collapse and unstable training [16].

WGAN: The WGAN framework replaces the binary classi-
fication loss with a continuous ”critic” score from 0 to 1 based
on the Wasserstein distance, which improves training stability
[18]. The WGAN loss for the discriminator is:

LWGAN(D) = −Ey∼Pr
[D(y)] + Ex∼Pn

[D(G(x))]

+λEx̂∼Px̂
[(∥∇x̂D(x̂)∥2 − 1)2], (4)

where Pr and Pn represent the real and noisy distributions,
respectively, and λ is a penalty coefficient enforcing the
Lipschitz constraint [21]. The generator’s objective is:

LWGAN(G) = −Ex∼Pn
[D(G(x))]. (5)

C. Residual Encoder–Decoder Architecture

The generator in the RED-WGAN framework uses a resid-
ual encoder-decoder structure. The encoder is composed of
four 3D convolutional layers with 3×3×3 kernels, batch nor-
malization, and LeakyReLU activation extract features from
noisy inputs. The batch normalization is applied to stabilize
and accelerate the training while the activation functions
introduce non-linearity and help prevent a vanishing gradient.
Additionally, the decoder is symmetrically made with four 3D
deconvolutional layers that reconstruct the clean image, aided
by skip connections linking encoder and decoder layers. With
residual learning, skip connections enable the model to focus
on reconstructing residual noise, rather than the entire image,
preserving structural details in the process [22].

On the other hand, the discriminator is a 3D convolutional
network with three layers, followed by batch normalization
and LeakyReLU activation. The purpose for including batch
normalization in the discriminator is that it stabilizes the
adversarial training while the activation function, like before,
ensures efficient gradient flow for learning the difference
in real and generated images. The discriminator outputs a
Wasserstein distance score that indicates the closeness of
generated images to the real distribution.

D. Combined Loss Function

The generator is trained using a combined loss function that
includes pixel-level accuracy, perceptual consistency, and ad-
versarial feedback. The MSE penalizes pixel-wise differences
between G(x) and y:

LMSE =
1

N

N∑
i=1

∥G(xi)− yi∥2. (6)

The perceptual loss measures feature-level differences using a
pre-trained VGG-19 network [19]:

LPerceptual =
1

N

N∑
i=1

∥ϕ(G(xi))− ϕ(yi)∥2, (7)



Fig. 1. Overview of the IXI Dataset: 600 MRIs collected including T1-, T2-,
and PD-weighted images.

where ϕ is the feature extractor. The WGAN Loss Encourages
the generator to align its output with the real data distribution.
Overall, the total generator loss is:

LGEN = λ1LMSE + λ2LPerceptual + λ3LWGAN, (8)

where λ1, λ2, λ3 are empirically determined.

III. EXPERIMENT

A. Dataset

We randomly selected 60 MRI scans from the IXI dataset,
including 20 of each T1-weighted, T2-weighted, and PD-
weighted images. The volumetric scans were used for train-
ing, validation, and testing of the proposed model. These
images were acquired from the Hammersmith Hospital with
a Phillips 3T system. This specific dataset was chosen for
its high-contrast, size (600+ MRI volumes), and relevance to
real-world clinical research. The organization of the selected
dataset is shown in Figure 1

B. Preprocessing

A randomized position along the z-axis for each MRI was
designated as the origin to generate transverse slices with a
depth of 6. Additionally, we alternatively trained models using
transverse slices with a depth of 6 extracted particularly from
the middle position of the z-axis for each MRI. The original
MRIs had dimensions of 256x256 with varying depths, which
were reduced to 6 layers. Rician noise was then added to
the data by combining real and imaginary components base
on the phase and magnitude of the signal from the image.
Rician noise, caused by thermal agitation of electrons during
MRI acquisition, can be modeled by combining the orthogonal
signal projection of the real and imaginary components. Rician
noise follows a non-symmetric distribution and is essentially a
shifted Raleigh distribution. Signal-to-noise ratios (SNRs) of
1%, 7%, and 13% with µ = 0.0, σ = 1 were added to the
training, validation, and testing sets.

Overlapping voxels were created as this approach has been
shown to not only increase the size of our data set, but also

improve the models ability to detect perceptual differences in
patches. Additionally, deep learning methods require a large
number of samples and thus a sliding kernel of size 32x32x6
with a stride of 16 was used across each MRI for a total of
approximately 88,000 training patches.

C. Training Details

To validate the performance of the replicated network ar-
chitecture, we trained the RED-WGAN model on T1-, T2-,
and PD-weighted images. Two data sets were created, one
using only PD-w images and one with T1-,T2- and PD-w
images, to assess the effect of data diversity. Simulated Rician
noise at varying SNRs (1%, 7%, 13%) was added and shuffled
to generate noisy inputs for training. The parameters λ1, λ2,
and λ3 in the loss function were experimentally set to 1, 0.1,
and 1× 10−3, respectively, based on the recommendations in
[17] and [23]. Following [16], the penalty coefficient λ in the
Wasserstein loss was set to 10.

The Adam algorithm [24] was employed to optimize the
loss function. The optimizer parameters were set as: α = 5×
10−5, β1 = 0.5, β2 = 0.9

The implementation was carried out using PyTorch, and all
training was conducted on the University of North Carolina
(UNC) Longleaf Computing Cluster, which enabled efficient
training for the 3D convolutional layers and adversarial com-
ponents.

The learning rate employed by the original paper was a
step-wise decay which halved the learning rate after every 4
epochs. This learning rate was initially set to 5 × 10−6. To
test the effect of learning rate, an exponential learning was
also applied with an exponential decay rate of 0.97.

D. Evaluation Methods

To validate the performance of RED-WGAN, its results
were compared against BM3D, a state-of-the-art denoising
algorithm. To evaluate the performance of these methods,
two quantitative metrics were employed, PSNR and SSIM.
PSNR considers the root mean square error (RMSE) between
the ground truth and the denoised images. Higher PSNR
values indicate better fidelity to the original clean image.
SSIM, introduced by Wang et al. [25], measures the structural
similarity between the ground truth and the denoised images.
It evaluates image quality by considering luminance, contrast,
and structural information, with values closer to 1 indicating
higher similarity.

IV. RESULTS

A. Clinical WGAN Results

The initial data set contained only PD-w images with 88305
training and 12615 validation patches. The secondary data set
contained T1-,T2-, and PD-w images with 28350 training and
4050 validation patches.

After running a baseline test for both data sets, where all
the hyper parameters (excluding number of epochs) matched
the original paper, a series of experiments was completed.
First we enabled batch normalization in the discriminator, then



Fig. 2. Ground Truth, Noisy and Denoised PD-w images at noise levels
1,7,13. Images denoised using Baseline PD-w only model.

applied an exponential learning rate, and finally tested the
ratio of discriminator to generator trainings (1 and 3 vs. the
nominal 5). For each of these tests, only one aspect of training
was changed compared to the baseline model. Although some
models were trained for a longer number of batches, limited
cluster resources kept some training to only 30 epochs. As
such, for comparison of models, image metrics from epoch
30 will be listed in the table below.

Model Level 1 Noise Level 7 Noise Level 13 Noise
PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 29.28 0.7430 24.98 .6547 23.99 0.5043
BN in D 29.22 0.7423 24.95 0.6534 23.96 0.5083

Exp. 28.49 0.7437 24.22 0.6627 24.10 0.4940
Iter 1 29.19 0.7429 25.00 0.6557 24.00 0.4887
Iter 3 29.28 0.7439 25.02 0.6583 24.04 0.5061

TABLE I
IMAGE METRICS FROM DENOISED PD-W IMAGES OUTPUTTED BY MODELS

TRAINED ON THE PD-W ONLY DATA SET.

Model Level 1 Noise Level 7 Noise Level 13 Noise
PSNR SSIM PSNR SSIM PSNR SSIM

Baseline 48.47 0.9518 30.90 0.4415 25.35 0.2664
BN in D 49.07 0.9657 30.94 0.4502 25.36 0.2656

Exp. 50.27 0.9788 31.38 0.4635 25.57 0.2665
Iter 1 47.53 0.9522 30.87 0.4493 25.34 0.2665
Iter 3 48.37 0.9526 30.90 0.4497 25.35 0.2661

TABLE II
IMAGE METRICS FROM DENOISED PD-W IMAGES OUTPUTTED BY MODELS

TRAINED ON THE T1-, T2-, AND PD-W DATA SET.

B. BM3D

In the original paper, BM4D was utilized as one of the
state-of-the-art methods. For our purposes, BM3D was deemed

Fig. 3. Ground Truth, Noisy and Denoised PD-w images at noise levels
1,7,13. Images denoised using Baseline T1-,T2-, and PD-w model.

Fig. 4. Ground Truth, Noisy and Denoised PD-w images at noise level 7.
Images denoised using BM3D. There is significant oversmoothing shown in
the Denoised image

sufficient, although it is less effective at processing 3D images,
such as MRIs, due to its inability to track similarities across
layers. In this study, BM3D was applied independently to each
of the six layers within each patch, after which the image
layers were stacked back together. The PSNR and SSIM values
for the BM3D-processed PD images under noise levels 1, 7,
and 13 are presented in Table III.

Metrics Level 1 Noise Level 7 Noise Level 13 Noise
PSNR 40.37 25.97 24.72
SSIM 0.8211 0.5070 0.4595

TABLE III
TABLE WITH PSNR AND SSIM MEASURES FOR BM3D PROCESSED

IMAGES OF NOISE LEVELS 1, 7, AND 13

While these results are inferior to the BM4D outcomes
reported in the original paper, BM3D adequately denoised
the images but performed significantly worse than BM4D in
maintaining structural integrity. For instance, the SSIM value
for BM4D at noise level 13 was 0.8124, whereas the SSIM
for BM3D at the same noise level was only 0.4595. [1] Both
BM3D and BM4D cause higher amounts of oversmoothing,



which can be seen in Figure 4. Since BM3D is not a deep
learning-based method, we did not expect the performance of
BM3D to improve with a broader dataset. The PD-w BM3D
results can be used as a comparison for both models trained.

V. DISCUSSION

A. Interpretation of Results

Table I contains the PSNR and SSIM results for our first
dataset, with the best image metrics for each noise level
highlighted in bold. The model trained with a Discriminator-
Generator training ratio of 3:1 consistently performed best
at lower noise levels, while the model with an exponential
learning rate performed well at higher noise levels. This
suggests that reducing the ratio from 5:1 to 3:1 and adopting
exponential learning rates could improve training.

Looking at Figure 2, it can be seen that for noise levels 7
and 13, the PD-w-only model significantly denoised the MRI
image. However, for noise level 1, the denoised image actually
loses some of its structural features and the image metrics
worsen as training continues. This is possibly due to a bias
toward higher noise levels.

The image metrics for the T1-, T2-, PD-w trained models
are shown in Table II, with the exponential learning rate model
outperforming the other models every time. This warrants fur-
ther investigation comparing the baseline step decay learning
rate to an exponential learning rate. Although the T1-, T2-,
PD-w trained models seem superior to the PD-w-only models
based on PSNR image metrics, Figure 3 demonstrates that
the baseline model did not perform well at denoising noise
levels 7 and 13. This suggests that the SSIM image metric,
in which the PD-w-only models performed better, is more
important when evaluating the performance of RED-WGAN
models. The deceased performance using the second data set
may have been caused by the smaller number of training
and validation patches. Unfortunately, this does not allow any
conclusions to be made regarding the effect of image diversity
on model performance. Another potential method to evaluate
model performance is comparing the initial and final image
metrics to assess how well a model improves, rather than just
focusing on the final value. It should be noted that the original
paper was only outperformed by the T1-, T2-, PD-w trained
models in terms of PSNR for noise level 1 [1]. The original
paper performed better for every other image metric and noise
level combination.

Finally, while BM3D outperformed the PD-w weighted
models in PSNR for all noise levels, the PD-w weighted
models achieved higher SSIM values for noise levels 7 and
13 (Table III). This may be due to BM3D’s tendency to
oversmooth data, which is exemplified in Figure 4.

B. Limitations

A significant limitation of the first dataset was that it
consisted exclusively of PD images. Additionally, during pre-
processing, MRI slices were taken only from the same region
of the brain, restricting the diversity of the training data. These
issues were mitigated in the second dataset, which included

T1, T2, and PD images and randomized slice acquisition along
the Z-axis.

Another limitation pertains to the noise generation process.
The datasets simulated noise at discrete levels rather than
a random continuous spectrum, which would have better
represented real-world scenarios. The greatest constraint of
this study was computational power. We were unable to utilize
multiple GPUs simultaneously, and time constraints prevented
us from training for the suggested 100 epochs, potentially
compromising the model’s robustness. High memory demands
due to the volume of training images also posed challenges.
Unlike the target paper, which validated models using simu-
lated data from the BrainWeb Database, our study relied on
different validation methods.

C. Future Improvements

To address the limitations, future work could include gener-
ating noise at random SNR levels between two discrete values,
preventing the model from learning overly specific noise pat-
terns. Leveraging multiple GPUs for parallel processing would
reduce epoch times and enable longer training durations.
Hyperparameter tuning, such as optimizing the learning rate,
could further enhance the model’s performance. The paper
mainly used a step-wise decay learning rate, while a possible
improvement would be to go back and use the step-wise decay
learning rate with our more robust dataset.

Expanding the dataset to include MRI scans from multiple
hospital systems, with different resolutions, could improve
model generalization. Additionally, using BM4D for eval-
uation would provide a more relevant comparison metric,
as BM4D is specifically designed for 3D image denoising.
Metrics such as the Information Fidelity Criterion (IFC) could
also be introduced to better assess the model’s ability to
preserve critical anatomical features.

D. Conclusion and Practical Implementation

In this study, we attempted to replicate the RED-WGAN
framework. We trained two models one with just PD images
and one with a combined dataset of T1-, T2-, and PD-w
images. There was simulated Rician noise at 1Our model was
still able to denoise the images, particularly at higher noise
levels, and outperformed the BM3D algorithm in terms of
SSIM. Reducing the discriminator-to-generator training ratio
from 5:1 to 3:1 and employing an exponential learning rate
decay, showed improvement in model performance. How-
ever, the study was limited by the dataset and computational
strength In conclusion, our model was able to denoise images
and with further refinements and better datasets, our model
would be better suited at replicating the results from the target
paper. The residual autoencoder structure ensures high levels
of structural preservation, making it valuable for applications
like neurosurgical planning, where high-quality images are
essential. Furthermore, the model enables faster MRI sampling
times by effectively denoising lower-quality images acquired
in shorter durations.



ABBREVIATIONS

3D – Three-Dimensional; BM3D - Block Matching and
3D Filtering; BM4D - Block Matching and 4D Filtering;
CNNs – Convolutional Neural Networks; GAN – Generative
Adversarial Network; IFC - Information Fidelity Criterion;
MSE – Mean Squared Error; MRI – Magnetic Resonance
Imaging; NLM – Non-Local Means; PSNR – Peak Signal-
to-Noise Ratio; RED-WGAN – Residual Encoder–Decoder
Wasserstein Generative Adversarial Network; RMSE - Root
Mean Square Error; SNR – Signal-to-Noise Ratio; SSIM –
Structural Similarity Index Measure; UNC - University of
North Carolina; WGAN – Wasserstein-Generative Adversarial
Network.

DATA AND CODE AVAILABILITY

The code for this project is available at GitHub Repository,
and the MRI dataset was obtained from the IXI dataset
available at IXI Dataset.
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